Skip to content

DataDog

By enabling this toolset, HolmesGPT will be able to fetch logs from DataDog. This allows Holmes to access your application logs stored in DataDog for investigation purposes.

Logging Toolsets

Only one logging toolset should be enabled at a time. If you enable this toolset, disable the default kubernetes/logs toolset.

HolmesGPT provides several out-of-the-box alternatives for log access. You can select from these options:

Prerequisites

  1. A DataDog API key with log access permissions
  2. A DataDog Application key

You can find these in your DataDog account under Organization Settings > API Keys and Application Keys.

Configuration

First, set the following environment variables:

export DD_API_KEY="<your DataDog API key>"
export DD_APP_KEY="<your DataDog application key>"

Then add the following to ~/.holmes/config.yaml, creating the file if it doesn't exist:

toolsets:
  datadog/logs:
    enabled: true
    config:
      site: "datadoghq.com"  # or datadoghq.eu for EU, etc.

  kubernetes/logs:
    enabled: false  # Disable default Kubernetes logging
holmes:
  additionalEnvVars:
    - name: DD_API_KEY
      value: "<your DataDog API key>"
    - name: DD_APP_KEY
      value: "<your DataDog application key>"
  toolsets:
    datadog/logs:
      enabled: true
      config:
        site: "datadoghq.com"  # or datadoghq.eu for EU, etc.

    kubernetes/logs:
      enabled: false  # Disable default Kubernetes logging

Update your Helm values and run a Helm upgrade:

helm upgrade robusta robusta/robusta --values=generated_values.yaml --set clusterName=<YOUR_CLUSTER_NAME>

Advanced Configuration

You can customize the DataDog site and other parameters:

toolsets:
  datadog/logs:
    enabled: true
    config:
      site: "datadoghq.com"  # Options: datadoghq.com, datadoghq.eu, us3.datadoghq.com, etc.
      timeout: 30  # Request timeout in seconds

Capabilities

Tool Name Description
datadog_fetch_logs Fetch logs from DataDog for specified time ranges and filters
datadog_search_logs Search logs in DataDog using query patterns